Crystal Structure Determination of the Oxynitride Sr₂TaO₃N

N. Diot,* R. Marchand,*¹ J. Haines,† J. M. Léger,† P. Macaudière,‡ and S. Hull§

*Laboratoire "Verres et Céramiques," UMR CNRS 6512, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; †Laboratoire de Physicochimie des Matériaux, CNRS, 1, place Aristide Briand, 92195 Meudon Cedex, France;

‡Rhodia, Centre de Recherches d'Aubervilliers, 52, rue de la Haie Coq, 93308 Aubervilliers Cedex, France; and

§ISIS Science Division, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, United Kingdom

Received February 22, 1999; in revised form April 28, 1999; accepted May 10, 1999

The crystal structure of the strontium tantalum oxynitride Sr₂TaO₃N has been resolved by Rietveld refinement using timeof-flight neutron powder diffraction data. The structure is of the K₂NiF₄ type with a partially ordered anion sublattice (tetragonal, *I4/mmm*, *a* = 4.04127(3) Å, *c* = 12.6073(2) Å, *c/a* = 3.120, *Z* = 2). The tantalum atoms are at the center of TaO₂(O, N)₄ octahedra built up from two oxygen atoms at the apexes and four (N + O) atoms statistically forming the median plane. The strontium atoms have a coordination number of nine: SrO₅(O, N)₄. The profile agreement factors are $R_p = 0.022$, $R_{wp} =$ 0.016, $R_{exp} = 0.012$, and $R_I = 0.063$. © 1999 Academic Press

Key Words: Sr₂TaO₃N, K₂NiF₄ structure; time-of-flight neutron diffraction; oxynitride.

INTRODUCTION

Many oxynitrides can be considered to be offspring of oxide parents in which some of the oxygen has been replaced by nitrogen. In certain cases, it is possible to find corresponding oxide compositions, with the same general stoichiometry, from which they are derived by applying the cross-substitution principle. This principle consists of compensating, from a charge balance viewpoint, the anionic substitution of trivalent nitrogen for divalent oxygen by an equivalent cationic substitution. Oxynitrides will be able to have the same structure type as parent oxides provided that the substituting cations are compatible in size. This principle has been widely used to prepare new oxynitrides of the predicted structure type (1, 2). Besides this same general chemical role as oxygen played by nitrogen, an important question arises about the precise location of the nitrogen atoms and their role in the structural arrangement. Neutron diffraction is essential here, as the X-ray scattering factors of oxygen and nitrogen are not sufficiently different to permit the two atoms to be distinguished. In contrast, the neutron

scattering length of nitrogen, 0.94×10^{-12} cm, is significantly larger than that of oxygen, 0.575×10^{-12} cm, thus making it possible to determine whether the anion sublattice is ordered.

Among the oxynitrides studied by neutron diffraction, only a few have been shown to exhibit an ordered nitrogen/oxygen arrangement. That is the case, for example, in TaON (3) with the ZrO_2 Baddeleyite-type structure and in Nd₂AlO₃N (4) with the K₂NiF₄-type structure. In this paper, another K₂NiF₄-type oxynitride has been studied by neutron diffraction, in which only partial ordering is encountered.

EXPERIMENTAL

Oxynitrides A_2 TaO₃N (A =Ca, Sr, Ba) have been obtained by reaction between ammonia and an appropriate stoichiometric mixture (atomic ratio A/Ta = 2) of alkalineearth carbonate and tantalum oxide at 900-1000°C, as described previously (5). The strontium compound is an orange-colored powder which was prepared in a pure state, as verified by X-ray diffraction, after several 15-h heating cycles in flowing ammonia with subsequent regrinding in alcohol in an agat mortar. No other strontium and/or tantalum compounds were detected, thus confirming the product obtained was stoichiometric with respect to the metals. Chemical analysis of nitrogen was measured as N₂ by thermal conductivity with a LECO analyzer previously calibrated with pure 99.995% N2 gas. This analysis confirmed the Sr₂TaO₃N formulation (N wt% calc: 3.35; N wt% exp: 3.5(2)).

Time-of-flight (TOF) neutron powder diffraction experiments were performed using the medium resolution diffractometer Polaris at the ISIS spallation source. The Sr₂TaO₃N powder was placed in a 5-mm diameter vanadium sample holder. Data were collected over a TOF range from 2400 to 19000 μ s (*d* spacings range = 0.5-3.1 Å; constant resolution $\Delta d/d \sim 5.10^{-3}$) with a bank of ³He ionization counters situated at a diffraction angle of

¹To whom correspondence should be addressed. E-mail: Roger. Marchand@univ-rennes1.fr; fax: 33.(0)2.99.28.62.65.

 $2\theta = 145^{\circ}$ in a back scattering geometry (6). The acquisition time was on the order of 4 h. The temperature was controlled at 18°C during acquisition. The data collected were normalized for the incident flux profile measured using the scattering from a vanadium sample and Rietveld profile refinements were performed using the computer program TF12LS (7). All figures in parentheses refer to standard deviations given by TF12LS.

RESULTS AND DISCUSSION

The A_2BX_4 compounds with the tetragonal K₂NiF₄ structure, space group *I4/mmm*, Z = 2, can be described as two-dimensional perovskites (8). This structure consists of layers of corner-sharing BX_6 octahedra interspaced by A^{n+} cations. The coordination number of the A cations is nine instead of twelve in the cubic ABX_3 perovskite structure.

The oxynitride Sr_2TaO_3N crystallizes with this structure and the following refined unit cell parameter values at $18^{\circ}C$ have been obtained:

$$a = 4.04127(3)$$
 Å
 $c = 12.6073(2)$ Å

The observed systematic absences are consistent with the space groups *I4/mmm* and *I4mm* depending on whether the anion sublattice is disordered or ordered, respectively. In a first step, we tried to refine the structure in the I4mm space group permitting an ordered arrangement, with nitrogen and oxygen atoms respectively distributed in 2a and (2a + 4b) positions. The calculations did not lead to satisfactory results: $\chi^2 = 3.7$, anomalously high values of temperature factors, and indications of correlations between O and N coordinates of the 2*a* positions. Thus, in a second step the anions were put randomly in 4c and 4e positions of the centrosymmetric I4/mmm space group: the fit was better, with χ^2 equal to 2.1. However, a few of the intensities were not well fitted, suggesting that nitrogen was preferentially located in the special position 4c (0, 1/2, 0). A calculation based on this hypothesis led to a χ^2 value of 1.8. The scale factor, background, unit cell parameters, isotropic atomic displacement parameters, and z(Sr) and z(O2, N2) coordinates were varied simultaneously in the final refinement. The crystallographic details are gathered in Table 1, and the observed and calculated powder neutron diffraction profiles are displayed in Fig. 1.

The final atomic position parameters, occupancy and isotropic atomic displacement parameters are given in Table 2.

In conclusion, although a partial ordering occurs in the anion sublattice of Sr_2TaO_3N , the space group remains I4/mmm. Figure 2 shows the corresponding unit cell. The structural arrangement consists of layers of corner-sharing

TABLE 1

Space group	I4/mmm	
Z	2	
а	4.04127(3)	
с	12.6073(2)	
Diffraction angle	145°	
d-spacings range	0.5–3.1 Å	
No. of observations	3381	
No. of reflections	588	
No. of variables	24	
χ^2	1.81	
R _p	0.022	
R _{wp}	0.016	
R _{exp}	0.012	
R _I	0.063	

 $TaO_2(O, N)_4$ octahedra, apical sites being occupied primarily by oxygen (93%) and median sites by oxygen and nitrogen. The strontium atoms lie between the layers. The bond lengths in the coordination polyhedra of the strontium and tantalum atoms are reported in Table 3.

A large number of oxides and fluorides adopt the K₂NiF₄ structure. In the case of the oxides, numerous examples are known with two different cations A and A', yielding the formula $AA'BO_4$ (9). In contrast, very few compounds with two anions have been isolated. These are limited to the oxyfluorides K₂NbO₃F (10) and Sr₂FeO₃F (11) and the oxynitrides R_2AIO_3N ($R = La \rightarrow Eu$) (12, 13) and A_2TaO_3N (A = alkaline-earth element) (5).

As mentioned earlier, an ordered arrangement between oxygen and nitrogen was observed in Nd_2AlO_3N (4),

FIG. 1. Experimental (dotted line) and calculated (solid line) neutron time-of-flight (TOF) powder diffraction profiles from the final Rietveld refinement of Sr_2TaO_3N . Intensity is in arbitrary units and the difference/esd profile is also given.

TABLE 2

Atom	Position	Atomic position paramers	Occupancy	B (Å ²)
Та	2 <i>a</i>	0 0 0	1	0.29(2)
Sr	4e	0 0 0.3546(1)	1	0.56(2)
O1	4c	0 0.5 0	0.57(1)	0.53(2)
N1	4c	0 0.5 0	0.43(1)	0.53(2)
O2	4e	0 0 0.1602(2)	0.93(1)	1.25(4)
N2	4e	0 0 0.1602(2)	0.07(1)	1.25(4)

resulting in AlO₅N octahedra in which one apex is occupied by the nitrogen atom. This difference with respect to Sr₂TaO₃N is also revealed by their thermal expansion coefficients. Whereas Nd₂AlO₃N exhibits a strong anisotropic character, $\alpha_a = 0.51 \cdot 10^{-5} \text{ K}^{-1}$, $\alpha_c = 3.08 \cdot 10^{-5} \text{ K}^{-1}$ (14), a lesser anisotropy is observed for Sr₂TaO₃N: $\alpha_a =$ $0.99 \cdot 10^{-5} \text{ K}^{-1}$, $\alpha_c = 1.46 \cdot 10^{-5} \text{ K}^{-1}$ (14). However, in comparison, for K₂NiF₄-type monoanionic compounds such as K₂NiF₄ itself or Sr₂TiO₄, the thermal expansion along the tetragonal **a** and **c** directions is very similar (10):

$$K_2 \text{NiF}_4$$
: $\alpha_a = 2.87 \cdot 10^{-5} \text{ K}^{-1}$, $\alpha_c = 2.91 \cdot 10^{-5} \text{ K}^{-1}$,

$$Sr_2TiO_4: \alpha_a = 1.46 \cdot 10^{-5} K^{-1}, \alpha_c = 1.44 \cdot 10^{-5} K^{-1}.$$

FIG. 2. Perspective view of the Sr_2TaO_3N unit cell.

TABLE 3

Sr-(O1, N1)	$\times 4$	2.728(1)
Sr-(O2, N2)	$\times 4$	2.864(1)
Sr-(O2, N2)	$\times 4$	2.451(1)
Ta-(O1, N1)	$\times 4$	2.021(1)
Ta-(O2, N2)	$\times 4$	2.020(1)

Therefore, the intermediate situation encountered with Sr_2TaO_3N is in agreement with the partially ordered anionic arrangement observed.

In the K₂NiF₄-type A_2BX_4 compounds, the value of the c/a unit cell parameter ratio, calculated assuming regular contacts between atoms, is equal to 3.414 (2 + $\sqrt{2}$) (5). In fact, the experimental c/a values are often lower, for example 3.264 in K₂NiF₄ or 3.244 in Sr₂TiO₄. In Sr₂TaO₃N, this value is found to be even lower: c/a = 3.120. In contrast, Nd₂AlO₃N shows a c/a ratio of 3.382, which is very close to the ideal value. This is due in the latter case to the distorsion of the AlO₅N octahedra, elongated along the **c** direction (4):

Al-O (median): 1.855(0) Å, Al-O (apical): 2.086(8) Å,

Al-N (apical): 2.130(6) Å.

In contrast, as can be seen in Table 3, the Ta-O and Ta-(O, N) distances in the TaO₄N₂ octahedra are identical. Let us note that very similar values (Ta-(O, N) = 2.022(2))and 2.021(2) Å) were observed in $SrTaO_2N$, which has a distorted perovskite-type structure in which O and N are randomly distributed (16). The lower value of the c/a ratio in Sr₂TaO₃N with respect to that calculated can be explained by the great differences between the Sr-O distances in the SrO₇N₂ polyhedra. A very short Sr-O distance of 2.451(1) Å is observed along th c direction as compared to the other distances, in particular to the 2.864(1) Å which separate the strontium atom from the four oxygen located practically in the same xy plane: $z_{sr} = 0.1454(1)$, $z_0 =$ 0.1602(2). In comparison, the calculated Sr-O distances in Sr_2TiO_4 are, respectively, 2.556 Å for the shortest (parallel to c) and 2.748 Å for the four longest (perpendicular to c) $(z_{\rm Sr} = 0.145, z_{\rm O} = 0.152)$ (15).

CONCLUSION

The oxynitride Sr_2TaO_3N can be considered as deriving from Sr_2TiO_4 through the cross-substitution $Ta^{+V} + N^{-III} = Ti^{+IV} + O^{-II}$. Both compounds belong to the same K_2NiF_4 structure type, with nitrogen and oxygen being partially ordered in Sr_2TaO_3N .

The fact that nitrogen is less electronegative than oxygen leads to more covalent bonding in nitrides and oxynitrides than in oxides. Substitution of nitrogen for oxygen modifies the band structure and if the highest oxidation state of the transition metal can be stabilized, as is the case for tantalum in Sr_2TaO_3N , it often results in the color of the nitride-type compound being different from that of corresponding oxides. In the present case, it is illustrated by the orange color of the nitrided powder whereas the tantalates are white. This fact can be interpreted as a reduction of the gap between the valence and the conduction band. Knowing the crystal structure of Sr_2TaO_3N , it is now of interest to determine precisely the band structure of this compound in order to further understand the relationship with its color.

ACKNOWLEDGMENTS

We are grateful for the financial support for neutron diffraction study at ISIS Rutherford Appleton Laboratory provided by the European Union through its Training and Mobility of Researchers Programme for Large Scale Facilities.

REFERENCES

1. R. Marchand, Y. Laurent, J. Guyader, P. L'Haridon, and P. Verdier, J. Eur. Ceram. Soc. 8, 197 (1991).

- R. Marchand, in "Handbook on the Physics and Chemistry of Rare Earths," (K. A. Gschneidner Jr. and L. Eyring, Eds.), Vol. 25, p. 51. Elsevier, Amsterdam, 1998.
- 3. D. Armytage and B. E. F. Fender, *Acta Crystallogr. B* **30**, 809 (1974).
- R. Marchand, R. Pastuszak, Y. Laurent, and G. Roult, *Rev. Chim. Miner.* 19, 684 (1982).
- 5. F. Pors, R. Marchand, and Y. Laurent, Ann. Chim. Fr. 16, 547 (1991).
- S. Hull, R. I. Smith, W. I. F. David, A. C. Hannon, J. C. Mayers, and R. Cywinski, *Physica B* 180/181, 1000 (1992).
- 7. W. I. F. David, R. M. Ibberson, and J. C. Matthewman, unpublished; P. J. Brown and J. C. Matthewman, unpublished.
- O. Müller and R. Roy, in "The Major Ternary Structural Families," Springer-Verlag, Berlin, 1974.
- 9. P. Ganguly and C. N. R. Rao, J. Solid State Chem. 53, 193 (1984).
- 10. F. Galasso and W. Darby, J. Phys. Chem. 66, 1318 (1962).
- 11. F. Galasso and W. Darby, J. Phys. Chem. 67, 1451 (1963).
- 12. R. Marchand, C. R. Acad. Sci. Paris C 282, 329 (1976).
- Z. K. Huang, D. S. Yan, T. S. Yen, and T. Y. Tien, J. Solid State Chem. 85, 51 (1990).
- R. Assabaa-Boultif, R. Marchand, Y. Laurent, and J. J. Videau, *Mater. Res. Bull.* 29, 667 (1994).
- R. W. G. Wyckoff, in "Crystal Structures," 2nd ed., Vol. 3, p. 69. Interscience, New York, 1983.
- F. Pors, P. Bacher, R. Marchand, Y. Laurent, and G. Roult, *Rev. Int. Hautes Tempér. Réfract.*, Fr. 24, 239 (1987).